

A Primer on Digital Modulation

By Bertrand Zauhar, VE2ZAZ http://ve2zaz.net

August 2013

In this Presentation

- Modulation Fundamentals
- Real Life Communications Design Constraints
- Digital Modulation (DM) Tradeoffs
- DM Graphical Representation
- Specifics of several DM schemes
- DM Mod./Demod. Generation
- Typical Digital Radio
- Existing DM Protocols

An Analog World...

- Only three fundamental ways to modulate:
 - Amplitude Modulation (AM),
 - Frequency Modulation (FM),
 - Phase Modulation (PM).

Any modulation format, whether analog or digital, must use one or more of the above analog schemes.

Modulation Fundamentals

Constraints in Comm Systems Design

- The Communications Systems designers face the following constraints
 - Available bandwidth,
 - Permissible power,
 - Inherent noise level and other impairments of the system.
 - Electrical energy availability.
 - Cost

— ...

Digital Modulations (DM)

- Analog modulations
 - continuously variable over amplitude, frequency and/or phase.
- Digital modulations similar to analog modulations,
 - varying RF amplitude, frequency or phase,
- BUT
 - The parameters being modulated take on a specific set of waveform states or symbols.

VS.

Known Benefits of DM

- More information capacity,
 - For any given bandwidth
- More bandwidth-efficient,
- Higher data security,
 - Encoding, Encryption
- · Better quality communications,
 - Noise-Free, error correction

Fundamental Tradeoff

- Analog Modulation simple to create and detect, but is bandwidth inefficient.
- Digital modulation (DM) is more bandwidth and/or power efficient, but more complex to generate and decode.

Industry Trends

- From Analog...
- To digital (vector-based)
- To digital (multiplexed, complex encoding, ...)

Polar Representation

• Simultaneous magnitude and phase representation.

I - Q Representation

 Rectangular representation of the polar diagram using coordinates (I,Q).

Signal vector's projection onto I axis and Q

axis.

Constellation Diagram

Example above is QPSK.

Num. Bits carried / Symbol = √ Number of I-Q Points

Phase Shift Keying (PSK)

- Phase of constant amplitude carrier shifted 180 degrees, or 90 degrees.
- Quadrature-PSK more BW efficient than Bi-PSK.

Frequency Shift Keying (FSK)

- Frequency of a constant amplitude carrier shifted or not, representing a symbol.
 - BFSK: Two frequencies represent two symbols, (0 and 1, for example)
 - Not well illustrated with an IQ constellation

Min. Shift Keying (MSK)

- A type of FSK with constant phase/constant amplitude carrier, shifted or not, representing a symbol. Sinusoidal shaping.
 - Frequency difference between the 1 and 0 is always equal to half the data rate,
 - Reduces required bandwidth to minimum.

Quadrature Amplitude Modulation (QAM)

- Both Amplitude and Phase are varied to obtain a more complex constellation of symbols.
 - More efficient than BPSK, QPSK, or 8PSK.
 - Bandwidth #bit-times smaller

Modulation variations

- <u>I/Q offset modulation</u>: has power efficiency advantages
 - QPSK: the I and Q bit streams are switched at the same time
 - OQPSK: the I and Q bit streams are offset in their relative alignment by one bit period

Modulation variations

- <u>Differential modulation</u>: has bandwidth efficiency advantages
 - QPSK: information is carried by the absolute state
 - DQPSK: information is not carried by the absolute state, it is carried by the transition between states.

Modulation variations

- <u>Constant amplitude modulation</u>: has power efficiency advantages. Can use Class-C stages (non-linear)
 - QPSK: amplitude of carrier varies during transitions,
 - GMSK (GSM): amplitude of the carrier is constant, regardless of the variation in the modulating signal.

Orthogonal Frequency Division Multiplexing (OFDM)

- Not a basic modulation principle, rather a coding technique using several <u>orthogonal</u> sub-carriers (frequencies) to convey data.
- Each sub-carrier is modulated traditionally (such as PSK, QAM) at a slower data rate vs. single carrier system.
- Advantageous against:
 - Channel frequency roll-off,
 - Multipath fading,
 - Narrowband interference

Orthogonality

 In the symbol period T, we can use sinusoidal waveforms which have integer number of periods in the T.

Spread-Spectrum (SS)

- Signal generated with a known bandwidth is deliberately spread in the frequency domain. Typically sequential noise-like spectrum.
- Frequency Hopping (FHSS) and/or Direct Sequence (DSSS) modulation mainly used.

Pseudo-random number sequences determine and control the

spreading pattern of the signal.

Tx-Rx Synchronization critical!

- Advantageous against:
 - Jamming,
 - Eavesdropping,
 - Fading

Theoretical Bandwidth Efficiency Limits

- Give a good idea of relative bandwidth efficiency.
- Theoretical: cannot be achieved with real radio components and links.

format	Theoretical bandwidth efficiency limits	
MSK	1 bit/second/Hz	Compromise
BPSK	1 bit/second/Hz	
QPSK	2 bits/second/Hz	
8PSK	3 bits/second/Hz	
16 QAM	4 bits/second/Hz	
32 QAM	5 bits/second/Hz	
64 QAM	6 bits/second/Hz	
256 QAM	8 bits/second/Hz	

Filtering

- Slows down the transitions. Allows the transmitted bandwidth to be significantly reduced.
 - Any fast transition in a signal, whether it be amplitude, phase, or frequency, will require a wider occupied bandwidth.
 - May require more power to transmit (larger excursions)
 - Tradeoffs!
 - Common Filters
 - Raised cosine
 - Square-root raised cosine
 - Gaussian filters

Real Life Constellations

Digital Mod / Demod Generation

- I Q format practical
 - Digital modulators and demodulators are easy to implement.
 - I Q independence preserved

Transmitter (Modulator)

Receiver (Demodulator)

A Typical Digital Radio

Transmitter

Receiver

A Few DM Protocols

Cellular

GSM, GPRS, EDGE GMSK
W-CDMA DSSS HPSK, QPSK, 16QAM
HSDPA, HSUPA DSSS HPSK, QPSK,
16QAM
TDSCMA DSSS QPSK
TD-CDMA DSSS QPSK, 16QAM
IS-95 DSSS OQPSK, QPSK
cdma2000 DSSS QPSK, HPSK
1xEV-DO & DV DSSS QPSK, HPSK,
8PSK, 16QAM
iDEN QPSK, M16QAM
WiDEN QPSK, M16QAM, M64QAM
TETRA π/4-DQPSK

Amateur Radio

D-Star GMSK
AX-25 Packet FSK
Morse Code CW (ASK)
Repeater Morse Code Modulated CW
PSK31 PSK
RTTY FSK
FSK441, JT65 Multiple FSK
AMTOR, PACTOR, GTOR FSK

Point-to-Point Radio

Short Haul DSSS, 4FSK, 16QAM, 64QAM, 64TCM, 49QPR

Long Haul 128QAM, 128TCM, 256TCM

Radar

Chirps, BPSK, FHSS

Satellite

QPSK, 8PSK, 16QAM

ZigBee BPSK, OQPSK

HD Television

ATSC 8-VSB, 16-VSB

DVB-T QPSK, 16QAM, 64QAM on COFDM

ISDB-T BST-COFDM DQPSK, QPSK, 16QAM,

64QAM

Wireless Networks

Bluetooth FHSS, GPSK, $\pi/4$ -DQPSK WLAN DSSS CCK D8PSK, DQPSK, 52 OFDM, 64QAM WiMax OFDM BPSK, QPSK, 16QAM, 64QAM

References

- Digital Modulation in Communications Systems Agilent AN-1298
- Digital Modulation Fundamentals Tektronix
- Google
- Wikipedia